<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">

<head>
<meta http-equiv=Content-Type content="text/html; charset=us-ascii">
<meta name=Generator content="Microsoft Word 12 (filtered medium)">
<style>
<!--
 /* Font Definitions */
 @font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
 /* Style Definitions */
 p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri","sans-serif";
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;}
@page Section1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.Section1
        {page:Section1;}
-->
</style>
<!--[if gte mso 9]><xml>
 <o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
 <o:shapelayout v:ext="edit">
  <o:idmap v:ext="edit" data="1" />
 </o:shapelayout></xml><![endif]-->
</head>

<body lang=EN-US link=blue vlink=purple>

<div class=Section1>

<p class=MsoNormal>Hi Folks,<o:p></o:p></p>

<p class=MsoNormal>   I know I must be missing something, but can
someone help me out with this.  It is true that multiplying two
quaternions, a and b, can be seen as a linear transform of one on the other,
right?  So, for quaternions a, b and c you can have something like:<o:p></o:p></p>

<p class=MsoNormal><o:p> </o:p></p>

<p class=MsoNormal>c = a*b<o:p></o:p></p>

<p class=MsoNormal><o:p> </o:p></p>

<p class=MsoNormal>Option 1: Using a linear transform on b constructed from a<o:p></o:p></p>

<p class=MsoNormal>c = A*b<o:p></o:p></p>

<p class=MsoNormal>Option 2: Using a linear transform on a constructed from
b  <o:p></o:p></p>

<p class=MsoNormal>c = B*a<o:p></o:p></p>

<p class=MsoNormal><o:p> </o:p></p>

<p class=MsoNormal>Note that matrices A and B have a slightly different construction
since the product of two quaternions is not commutative.<o:p></o:p></p>

<p class=MsoNormal><o:p> </o:p></p>

<p class=MsoNormal>But, it looks to me like the OSG implementation is effectively
using option 1, but constructing the "A" matrix from the b quaternion?
So, it looks like a*b is actually b*a.  Is that intended?   If
I'm totally seeing this wrong, please forgive me.  I've attached a test
file.<o:p></o:p></p>

<p class=MsoNormal><o:p> </o:p></p>

<p class=MsoNormal>Thanks,<o:p></o:p></p>

<p class=MsoNormal>Matt Sutton<o:p></o:p></p>

<p class=MsoNormal>www.padtinc.com<o:p></o:p></p>

<p class=MsoNormal><o:p> </o:p></p>

</div>

</body>

</html>